object functions
Convenience functions that do not require type parameters or typeclasses to invoke. Use cases include calling from java or supporting pyspark bindings.
- Alphabetic
- By Inheritance
- functions
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
tdigestArrayReduceUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction
Obtain a UDF, usable with DataFrames, for aggregating a column of t-digest arrays into a single t-digest array.
Obtain a UDF, usable with DataFrames, for aggregating a column of t-digest arrays into a single t-digest array.
- compression
the t-digest compression parameter.
- maxDiscrete
maximum number of discrete values to track in PMF mode.
- returns
the new aggregating UDF
-
def
tdigestDoubleArrayUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction
Obtain a UDF, usable with DataFrames, for aggregating a column of double arrays with an array of t-digests.
Obtain a UDF, usable with DataFrames, for aggregating a column of double arrays with an array of t-digests.
- compression
the t-digest compression parameter.
- maxDiscrete
maximum number of discrete values to track in PMF mode.
- returns
the new aggregating UDF
-
def
tdigestDoubleUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction
Obtain a UDF, usable with DataFrames, for aggregating a column of double values with a t-digest.
Obtain a UDF, usable with DataFrames, for aggregating a column of double values with a t-digest.
- compression
the t-digest compression parameter.
- maxDiscrete
maximum number of discrete values to track in PMF mode.
- returns
the new aggregating UDF
-
def
tdigestFloatArrayUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction
Obtain a UDF, usable with DataFrames, for aggregating a column of float arrays with an array of t-digests.
Obtain a UDF, usable with DataFrames, for aggregating a column of float arrays with an array of t-digests.
- compression
the t-digest compression parameter.
- maxDiscrete
maximum number of discrete values to track in PMF mode.
- returns
the new aggregating UDF
-
def
tdigestFloatUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction
Obtain a UDF, usable with DataFrames, for aggregating a column of float values with a t-digest.
Obtain a UDF, usable with DataFrames, for aggregating a column of float values with a t-digest.
- compression
the t-digest compression parameter.
- maxDiscrete
maximum number of discrete values to track in PMF mode.
- returns
the new aggregating UDF
-
def
tdigestIntArrayUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction
Obtain a UDF, usable with DataFrames, for aggregating a column of integer arrays with an array of t-digests.
Obtain a UDF, usable with DataFrames, for aggregating a column of integer arrays with an array of t-digests.
- compression
the t-digest compression parameter.
- maxDiscrete
maximum number of discrete values to track in PMF mode.
- returns
the new aggregating UDF
-
def
tdigestIntUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction
Obtain a UDF, usable with DataFrames, for aggregating a column of integer values with a t-digest.
Obtain a UDF, usable with DataFrames, for aggregating a column of integer values with a t-digest.
- compression
the t-digest compression parameter.
- maxDiscrete
maximum number of discrete values to track in PMF mode.
- returns
the new aggregating UDF
-
def
tdigestLongArrayUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction
Obtain a UDF, usable with DataFrames, for aggregating a column of long-integer arrays with an array of t-digests.
Obtain a UDF, usable with DataFrames, for aggregating a column of long-integer arrays with an array of t-digests.
- compression
the t-digest compression parameter.
- maxDiscrete
maximum number of discrete values to track in PMF mode.
- returns
the new aggregating UDF
-
def
tdigestLongUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction
Obtain a UDF, usable with DataFrames, for aggregating a column of long-integer values with a t-digest.
Obtain a UDF, usable with DataFrames, for aggregating a column of long-integer values with a t-digest.
- compression
the t-digest compression parameter.
- maxDiscrete
maximum number of discrete values to track in PMF mode.
- returns
the new aggregating UDF
-
def
tdigestMLLibVecUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction
Obtain a UDF, usable with DataFrames, for aggregating a column of MLLib Vectors with an array of t-digests.
Obtain a UDF, usable with DataFrames, for aggregating a column of MLLib Vectors with an array of t-digests.
- compression
the t-digest compression parameter.
- maxDiscrete
maximum number of discrete values to track in PMF mode.
- returns
the new aggregating UDF
-
def
tdigestMLVecUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction
Obtain a UDF, usable with DataFrames, for aggregating a column of ML Vectors with an array of t-digests.
Obtain a UDF, usable with DataFrames, for aggregating a column of ML Vectors with an array of t-digests.
- compression
the t-digest compression parameter.
- maxDiscrete
maximum number of discrete values to track in PMF mode.
- returns
the new aggregating UDF
-
def
tdigestReduceUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction
Obtain a UDF, usable with DataFrames, for aggregating a column of t-digests into a single t-digest.
Obtain a UDF, usable with DataFrames, for aggregating a column of t-digests into a single t-digest.
- compression
the t-digest compression parameter.
- maxDiscrete
maximum number of discrete values to track in PMF mode.
- returns
the new aggregating UDF
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()