Packages

object functions

Convenience functions that do not require type parameters or typeclasses to invoke. Use cases include calling from java or supporting pyspark bindings.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. functions
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  10. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  14. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  15. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  16. def tdigestArrayReduceUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction

    Obtain a UDF, usable with DataFrames, for aggregating a column of t-digest arrays into a single t-digest array.

    Obtain a UDF, usable with DataFrames, for aggregating a column of t-digest arrays into a single t-digest array.

    compression

    the t-digest compression parameter.

    maxDiscrete

    maximum number of discrete values to track in PMF mode.

    returns

    the new aggregating UDF

  17. def tdigestDoubleArrayUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction

    Obtain a UDF, usable with DataFrames, for aggregating a column of double arrays with an array of t-digests.

    Obtain a UDF, usable with DataFrames, for aggregating a column of double arrays with an array of t-digests.

    compression

    the t-digest compression parameter.

    maxDiscrete

    maximum number of discrete values to track in PMF mode.

    returns

    the new aggregating UDF

  18. def tdigestDoubleUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction

    Obtain a UDF, usable with DataFrames, for aggregating a column of double values with a t-digest.

    Obtain a UDF, usable with DataFrames, for aggregating a column of double values with a t-digest.

    compression

    the t-digest compression parameter.

    maxDiscrete

    maximum number of discrete values to track in PMF mode.

    returns

    the new aggregating UDF

  19. def tdigestFloatArrayUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction

    Obtain a UDF, usable with DataFrames, for aggregating a column of float arrays with an array of t-digests.

    Obtain a UDF, usable with DataFrames, for aggregating a column of float arrays with an array of t-digests.

    compression

    the t-digest compression parameter.

    maxDiscrete

    maximum number of discrete values to track in PMF mode.

    returns

    the new aggregating UDF

  20. def tdigestFloatUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction

    Obtain a UDF, usable with DataFrames, for aggregating a column of float values with a t-digest.

    Obtain a UDF, usable with DataFrames, for aggregating a column of float values with a t-digest.

    compression

    the t-digest compression parameter.

    maxDiscrete

    maximum number of discrete values to track in PMF mode.

    returns

    the new aggregating UDF

  21. def tdigestIntArrayUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction

    Obtain a UDF, usable with DataFrames, for aggregating a column of integer arrays with an array of t-digests.

    Obtain a UDF, usable with DataFrames, for aggregating a column of integer arrays with an array of t-digests.

    compression

    the t-digest compression parameter.

    maxDiscrete

    maximum number of discrete values to track in PMF mode.

    returns

    the new aggregating UDF

  22. def tdigestIntUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction

    Obtain a UDF, usable with DataFrames, for aggregating a column of integer values with a t-digest.

    Obtain a UDF, usable with DataFrames, for aggregating a column of integer values with a t-digest.

    compression

    the t-digest compression parameter.

    maxDiscrete

    maximum number of discrete values to track in PMF mode.

    returns

    the new aggregating UDF

  23. def tdigestLongArrayUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction

    Obtain a UDF, usable with DataFrames, for aggregating a column of long-integer arrays with an array of t-digests.

    Obtain a UDF, usable with DataFrames, for aggregating a column of long-integer arrays with an array of t-digests.

    compression

    the t-digest compression parameter.

    maxDiscrete

    maximum number of discrete values to track in PMF mode.

    returns

    the new aggregating UDF

  24. def tdigestLongUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction

    Obtain a UDF, usable with DataFrames, for aggregating a column of long-integer values with a t-digest.

    Obtain a UDF, usable with DataFrames, for aggregating a column of long-integer values with a t-digest.

    compression

    the t-digest compression parameter.

    maxDiscrete

    maximum number of discrete values to track in PMF mode.

    returns

    the new aggregating UDF

  25. def tdigestMLLibVecUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction

    Obtain a UDF, usable with DataFrames, for aggregating a column of MLLib Vectors with an array of t-digests.

    Obtain a UDF, usable with DataFrames, for aggregating a column of MLLib Vectors with an array of t-digests.

    compression

    the t-digest compression parameter.

    maxDiscrete

    maximum number of discrete values to track in PMF mode.

    returns

    the new aggregating UDF

  26. def tdigestMLVecUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction

    Obtain a UDF, usable with DataFrames, for aggregating a column of ML Vectors with an array of t-digests.

    Obtain a UDF, usable with DataFrames, for aggregating a column of ML Vectors with an array of t-digests.

    compression

    the t-digest compression parameter.

    maxDiscrete

    maximum number of discrete values to track in PMF mode.

    returns

    the new aggregating UDF

  27. def tdigestReduceUDF(compression: Double, maxDiscrete: Int): UserDefinedFunction

    Obtain a UDF, usable with DataFrames, for aggregating a column of t-digests into a single t-digest.

    Obtain a UDF, usable with DataFrames, for aggregating a column of t-digests into a single t-digest.

    compression

    the t-digest compression parameter.

    maxDiscrete

    maximum number of discrete values to track in PMF mode.

    returns

    the new aggregating UDF

  28. def toString(): String
    Definition Classes
    AnyRef → Any
  29. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from AnyRef

Inherited from Any

Ungrouped